

Space-Division-Multiplexed Transmission Setups and Field Trials

Hack Your Research @ ECOC 2023

October 1st, 2023

Giammarco Di Sciullo

University of L'Aquila

Giammarco Di Sciullo PhD student at Università degli Studi dell'Aquila.

Outline

SDM Overview

19-Coupled-Core C+L Transmission Experiment

15-Mode Looping Experiments

- Long-distance MMF data transmission
- Impact of Mode Permutation in mitigating Modal Dispersion

- Introduction
- Recent Experiments

Quadrature Amplitude

Space-division multiplexing overview

Space division multiplexing (SDM) is a promising technology to increase the perfiber capacity in optical fiber transmission systems.

[B. Puttnam et al., Optica, vol. 8, no. 9, pp. 1186–1203 (2021)]

Space-division multiplexing overview

Space division multiplexing (SDM) is a promising technology to increase the perfiber capacity in optical fiber transmission systems.

[B. Puttnam et al., Optica, vol. 8, no. 9, pp. 1186–1203 (2021)]

• In CC-MCFs, single-mode cores are arranged to maximize random core coupling.

- In CC-MCFs, single-mode cores are arranged to maximize random core coupling.
 - High spatial density;
 - Reduced mode-dependent loss (MDL);
 - Reduced delay spread;
 - Required MIMO equalization.

- In CC-MCFs, single-mode cores are arranged to maximize random core coupling.
 - High spatial density;
 - Reduced mode-dependent loss (MDL);
 - Reduced delay spread;
 - Required MIMO equalization.
- Recent trend to have SDM fibers with the same 125 μ m cladding diameter as standard single-mode fibers (SMFs).

- In CC-MCFs, single-mode cores are arranged to maximize random core coupling.
 - High spatial density;
 - Reduced mode-dependent loss (MDL);
 - Reduced delay spread;
 - Required MIMO equalization.
- Recent trend to have SDM fibers with the same 125 μ m cladding diameter as standard single-mode fibers (SMFs).
 - Compatibility with existing manufacturing, cabling and connectorization processes;
 - Reduced vulnerability to mechanical failures.

[S. Matsuo et al., JLT, vol. 34, no. 6, pp. 1464-1475, (2016)]

- In CC-MCFs, single-mode cores are arranged to maximize random core coupling.
 - High spatial density;
 - Reduced mode-dependent loss (MDL);
 - Reduced delay spread;
 - Required MIMO equalization.
- Recent trend to have SDM fibers with the same 125 μ m cladding diameter as standard single-mode fibers (SMFs).
 - Compatibility with existing manufacturing, cabling and connectorization processes;
 - Reduced vulnerability to mechanical failures.

[S. Matsuo et al., JLT, vol. 34, no. 6, pp. 1464-1475, (2016)]

\mathbf{r}

Limitations to the number of spatial channels!

Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter

Georg Rademacher⁽¹⁾, Menno van den Hout^(1,2), Ruben S. Luís⁽¹⁾, Benjamin J. Puttnam⁽¹⁾, Giammarco Di Sciullo^(1,3), Tetsuya Hayashi⁽⁴⁾, Ayumi Inoue⁽⁴⁾, Takuji Nagashima⁽⁴⁾ Simon Gross⁽⁵⁾, Andrew Ross-Adams⁽⁶⁾, Michael J. Withford⁽⁶⁾, Jun Sakaguchi⁽¹⁾, Cristian Antonelli⁽³⁾, Chigo Okonkwo⁽²⁾, Hideaki Furukawa⁽¹⁾

(1) NICT, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan,
 (2) Eindhoven University of Technology, High Capacity Optical Transmission Lab, Eindhoven, The Netherlands
 ⁽³⁾ University of L'Aquila and CNIT, 67100, L'Aquila, Italy
 ⁽⁴⁾ Sumitomo Electric Industries, Ltd., 1 Taya-cho, Sakae-ku, Yokohama 244-8588, Japan
 ⁽⁵⁾ MQ Photonics Research Centre, School of Engineering, Macquarie Univ., Sydney, Australia.
 ⁽⁶⁾ MQ Photonics Research Centre, School of Math. and Physical Sciences, Macquarie Univ., Sydney, Australia.
 georg.rademacher@nict.go.jp

[G. Rademacher et al., Optica, OFC 2023, Th4A.4 (2023)]

[G. Rademacher et al., Optica, OFC 2023, Th4A.4 (2023)]

- We evaluated the standard deviation of the impulse response for all 381 measured WDM channels.
- High uniformity of the spatial mode dispersion was observed.

[G. Rademacher et al., Optica, OFC 2023, Th4A.4 (2023)]

We transmitted 19x381x24.5 GBd PDM-64-QAM resulting in a decoded data rate of 1.7 Pb/s, the highest reported data rate in any standard cladding diameter optical fiber.

Multi-mode fiber

 MMFs can accommodate a large number of spatial channels within the standard 125 μm cladding diameter (55 modes already demonstrated!).

[G. Rademacher et al., ECOC 2022, Th3C.3 (2022)]

Multi-mode fiber

- MMFs can accommodate a large number of spatial channels within the standard 125 μm cladding diameter (55 modes already demonstrated!).
 - Very high spatial density;
 - Differential mode delay (DMD);
 - Large MDL.

[G. Rademacher et al., ECOC 2022, Th3C.3 (2022)]

Multi-mode fiber

- MMFs can accommodate a large number of spatial channels within the standard 125 μm cladding diameter (55 modes already demonstrated!).
 - Very high spatial density;
 - Differential mode delay (DMD);
 - Large MDL.

- [G. Rademacher et al., ECOC 2022, Th3C.3 (2022)]
- DMD can be mitigated by implementing mode permutation.

[S. Arik et al., JLT, vol. 34, no. 11, pp. 2867-2880, (2016)]

Reduction of Modal Dispersion in a long-haul 15-Mode Fiber link by means of Mode Permutation

Giammarco Di Sciullo^(1,2), Menno van den Hout^(1,3), Georg Rademacher^(1,4), Ruben S. Luís⁽¹⁾, Benjamin J. Puttnam⁽¹⁾, Nicolas K. Fontaine⁽⁵⁾, Roland Ryf⁽⁵⁾, Haoshuo Chen⁽⁵⁾, Mikael Mazur⁽⁵⁾, David T. Neilson⁽⁵⁾, Pierre Sillard⁽⁶⁾, Frank Achten⁽⁶⁾, Jun Sakaguchi⁽¹⁾, Chigo Okonkwo⁽³⁾, Antonio Mecozzi⁽²⁾, Cristian Antonelli⁽²⁾, and Hideaki Furukawa⁽¹⁾.

⁽¹⁾ NICT, Koganei, Tokyo, Japan, giammarco.disciullo@graduate.univaq.it

- ⁽²⁾ University of L'Aquila and CNIT, L'Aquila, Italy,
- ⁽³⁾ High Capacity Optical Transmission Lab, Eindhoven University of Technology, The Netherlands,
- ⁽⁴⁾ INT, University of Stuttgart, Stuttgart, Germany,
- ⁽⁵⁾ Nokia Bell Labs, New Providence, NJ, USA,
- ⁽⁶⁾ Prysmian Group, France and The Netherlands.

We.A.1.2 – 9:45-10:00, Wednesday, 4 October 2023, Lomond Auditorium

273.6 Tb/s Transmission Over 1001 km of 15-Mode Fiber Using 16-QAM C-Band Signals

Menno van den Hout^(1,2), Giammarco Di Sciullo^(1,3), Georg Rademacher⁽¹⁾, Ruben S. Luís⁽¹⁾, Benjamin J. Puttnam⁽¹⁾, Nicolas K. Fontaine⁽⁴⁾, Roland Ryf⁽⁴⁾, Haoshuo Chen⁽⁴⁾, Mikael Mazur⁽⁴⁾, David T. Neilson⁽⁴⁾, Pierre Sillard⁽⁵⁾, Frank Achten⁽⁶⁾, Jun Sakaguchi⁽¹⁾, Cristian Antonelli⁽³⁾, Chigo Okonkwo⁽²⁾ and Hideaki Furukawa⁽¹⁾

⁽¹⁾ NICT, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan,
 ⁽²⁾ High Capacity Optical Transmission Lab, Eindhoven University of Technology, Eindhoven, The Netherlands
 ⁽³⁾ University of L'Aquila and CNIT, 67100, L'Aquila, Italy
 ⁽³⁾ Nokia Bell Labs, 600 Mountain Ave, New Providence, NJ 07974, USA
 ⁽⁵⁾ Prysmian Group, 644 Boulevard Est, Billy Berclau, 62092 Haisnes Cedex, France
 ⁽⁶⁾ Prysmian Group, Eindhoven, 5651 CA, The Netherlands
 m.v.d.hout@tue.nl

[M. van den Hout et al., Optica, OFC 2023, Th4B.5 (2023)]

Long-distance MMF data transmission

• We transmitted 15x184x24.5 GBd PDM-16-QAM resulting in a decoded data rate of 273.6 Tb/s, the highest reported data rate in long-distance MMF transmission, and resulting in a record capacity-distance product for MMFs.

Title

Transmission of 138.9 Tb/s over 12345 km of 125 μm cladding diameter 4-core fiber using signals spanning S, C, and L-band

Menno van den Hout^(1,2), Benjamin J. Puttnam⁽¹⁾, Giammarco Di Sciullo^(1,3), Ruben S. Luís⁽¹⁾, Georg Rademacher⁽⁴⁾, Cristian Antonelli⁽³⁾, Chigo Okonkwo⁽²⁾, and Hideaki Furukawa⁽¹⁾

⁽¹⁾ Photonic Network System Lab, NICT, 4-2-1, Nukui-Kitamachi, Tokyo, Japan, <u>m.v.d.hout@tue.nl</u>

⁽²⁾ High Capacity Optical Transmission Lab, Eindhoven University of Technology, The Netherlands

⁽³⁾ University of L'Aquila and CNIT, 67100, L'Aquila, Italy

⁽⁴⁾ INT, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

M.A.5.5 – 14:45-15:00, Monday, 2 October 2023, Dochart

• University of L'Aquila owns the first field-deployed SDM fiber infrastructure worldwide.

- University of L'Aquila owns the first field-deployed SDM fiber infrastructure worldwide.
- This infrastructure includes:

- University of L'Aquila owns the first field-deployed SDM fiber infrastructure worldwide.
- This infrastructure includes:
 - Coupled-core 4-core fibers;
 - Uncoupled-core 4-core fibers;
 - Uncoupled-core 8-core fibers;

- University of L'Aquila owns the first field-deployed SDM fiber infrastructure worldwide.
- This infrastructure includes:
 - Coupled-core 4-core fibers;
 - Uncoupled-core 4-core fibers;
 - Uncoupled-core 8-core fibers;
 - 15-Mode fibers;

- University of L'Aquila owns the first field-deployed SDM fiber infrastructure worldwide.
- This infrastructure includes:
 - Coupled-core 4-core fibers;
 - Uncoupled-core 4-core fibers;
 - Uncoupled-core 8-core fibers;
 - 15-Mode fibers;
 - Single-mode fibers.

- Coupled-core 4-core fibers (12);
- Uncoupled-core 4-core fibers (4);
- Uncoupled-core 8-core fibers(2).

Fiber ID	RC-4CF	UC-4CF	UC-8CF
Coupling characteristics	Coupled	Uncoupled	Uncoupled
Core count	4	4	8
Core pitch	$^{a)}25.4 \pm 0.2 \ \mu m$	$^{a)}40.2 \pm 0.2 \ \mu m$	$^{a)}30.3 \pm 0.1 \ \mu m$
Cladding diameter	125 μm	125 μm	125 μm
Mode field diameter	$^{a,c,d)}10.1 \pm 0.2 \ \mu m$	^{b)} 8.4–8.5 µm	^{b)} 8.4–8.5 µm
Effective area of core mode	$^{a,c,d)}80.9 \pm 3.3 \ \mu m^2$	n/a	n/a
22-m cutoff wavelength λ_{cc}	1.41–1.51 μm	1.21–1.24 μm	*1.27–1.30 μm
Attenuation	^{c)} 0.170–0.175 dB/km	^{c)} 0.201–0.246 dB/km	^{b)} 0.347–0.363 dB/km
Transmission suitable wavelength band	C to L bands	O to L bands	O band

- Large number of spatial modes within 125 μm cladding diameter.

[P. Sillard et al., JLT, vol. 34, pp. 425-430 (2016)]

- Large number of spatial modes within 125 μm cladding diameter.
- Low attenuation (<0.24 dB/km at 1550 nm) and low DMD (<100 ps/km).

[P. Sillard et al., JLT, vol. 34, pp. 425-430 (2016)]

Field-deployed 15-mode fiber characterization

Characterization of the First Field-Deployed 15-Mode Fiber Cable for High Density Space-Division Multiplexing

Georg Rademacher⁽¹⁾, Ruben S. Luís⁽¹⁾, Benjamin J. Puttnam⁽¹⁾, Giammarco Di Sciullo⁽²⁾, Robert Emmerich⁽³⁾, Nicolas Braig-Christophersen⁽³⁾, Andrea Marotta⁽²⁾, Lauren Dallachiesa⁽⁴⁾, Roland Ryf⁽⁴⁾, Antonio Mecozzi⁽²⁾, Colja Schubert⁽³⁾, Pierre Sillard⁽⁵⁾, Frank Achten⁽⁵⁾, Giuseppe Ferri⁽⁵⁾, Jun Sakaguchi⁽¹⁾, Cristian Antonelli⁽²⁾, Hideaki Furukawa⁽¹⁾

⁽¹⁾ NICT, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan, georg.rademacher@nict.go.jp

- ⁽²⁾ University of L'Aquila and CNIT, 67100, L'Aquila, Italy
- ⁽³⁾ Fraunhofer Institute for Telecommunications HHI, Einsteinufer 37, 10587 Berlin, Germany
- ⁽⁴⁾ Nokia Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974, USA
- ⁽⁵⁾ Prysmian Group, Haisnes, France; Eindhoven, The Netherlands; Milano, Italy

[G. Rademacher et al., ECOC 2022, Th3B.1 (2022)]

Field-deployed 15-mode fiber characterization

[G. Rademacher et al., ECOC 2022, Th3B.1 (2022)]

Field-deployed 15 mode fiber characterization

[G. Rademacher et al., ECOC 2022, Th3B.1 (2022)]

Field-deployed 15 mode fiber characterization 16.6 µs 33.3 µs /# 11 !!! Mode De-Multiplexer Mode +!! MIL Laser - DP-IQ Mod AOM-00 ltiplexer DAC 6.1 or 48.8 km 0 400 ns Field-deployed m 000 00 15-mode 100 ns() m 16.6 µs MMF 125 µm 04 LO AOM m ¹33.3 μs 2 EDFA 😐 1 x 3 coupler 🔍 1 x 5 coupler Optical band pass filter 28.4 µm [G. Rademacher et al., ECOC 2022, Th3B.1 (2022)] NOKIA Prysmian Group 💹 Fraunhofer BELL

HHI

ABS

Field-deployed 15-mode fiber characterization

Spatial super channel switching SDM network node

Demonstration of a Spatial Super Channel Switching SDM Network Node on a Field Deployed 15-Mode Fiber Network

R. S. Luis¹, G. Rademacher¹, B. J. Puttnam¹, G. Di Sciullo², A. Marotta², R. Emmerich³, N. Braig-Christophersen,³, R. Stolte⁴, F. Graziosi², A. Mecozzi², C. Schubert³, G. Ferri⁵, F. Achten⁵, P. Sillard⁵, R. Ryf⁶, L. Dallachiesa⁶, S. Shinada¹, C. Antonelli², H. Furukawa¹

- ⁽¹⁾ National Institute of Information and Comm. Technology, Koganei, Japan. E-mail : rluis@nict.go.jp
- ⁽²⁾ University of L'Aquila and CNIT, L'Aquila, Italy
- ⁽³⁾ Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute, Berlin, Germany,
- ⁽⁴⁾ Finisar Australia, Rosebery, NSW, Australia,
- ⁽⁵⁾ Prysmian Group, Milano, Italy; Eindhoven, The Netherlands and Haisnes, France
- ⁽⁶⁾ Nokia Bell Labs, New Jersey, USA

[R. Luis et al., ECOC 2022, Th3C.5 (2022)]

Spatial super channel switching SDM network node

[R. Luis et al., ECOC 2022, Th3C.5 (2022)]

Field-deployed UC-MCF characterization

Characterization of Phase Stability and Core-to-Core Delays in a Field-Deployed Uncoupled-Core Multi-Core Fiber Cable

M. Mazur⁽¹⁾, N. K. Fontaine⁽¹⁾, R. Ryf⁽¹⁾, L. Dallachiesa⁽¹⁾, H. Chen⁽¹⁾, D. T. Neilson⁽¹⁾, A. Marotta⁽²⁾, T. Hayashi⁽³⁾, T. Nagashima⁽³⁾, T. Nakanishi⁽³⁾, F. Graziosi⁽²⁾, D. Blumenthal⁽⁴⁾, M. Harrington⁽⁴⁾, F. Quinlan^(5,6), A. Mecozzi⁽²⁾, and C. Antonelli⁽²⁾

⁽¹⁾ Nokia Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974, USA <u>mikael.mazur@nokia-bell-labs.com</u>

- ⁽²⁾ University of L'Aquila and CNIT, 67100 L'Aquila, Italy
- ⁽³⁾ Sumitomo Electric Industries, Ltd., 1, Taya-cho, Sakae-ku, Yokohama, Kanagawa, 244-8588, Japan
- ⁽⁴⁾ University of California at Santa Barbara, Department of ECE, Santa Barbara, CA 9316 USA
- ⁽⁵⁾ Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
- ⁽⁶⁾ National Institute of Standards and Technology, Boulder, Colorado 80305, USA

Th.B.3.3 – 11:15-11:30, Thursday, 5 October 2023, Boisdale - Ground Floor

Field-deployed 15-mode fiber characterization

Broadband Characterization of Field-Deployed 15-mode Graded-Index Multi-Mode Fiber Cable

M. Mazur⁽¹⁾, N. K. Fontaine⁽¹⁾, L. Dallachiesa⁽¹⁾, R. Ryf⁽¹⁾, H. Chen⁽¹⁾, D. T. Neilson⁽¹⁾, A. Marotta⁽²⁾, P. Sillard⁽³⁾, G. Ferri⁽⁴⁾ F. Achten⁽⁵⁾ F. Graziosi⁽²⁾, A. Mecozzi⁽²⁾, and C. Antonelli⁽²⁾
⁽¹⁾ Nokia Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974, USA
⁽²⁾ University of L'Aquila and CNIT, 67100 L'Aquila, Italy
⁽³⁾ Prysmian Group, Parc des Industries Artois Flandres, Haisnes 62092, France
⁽⁴⁾ Prysmian Group, Via Chiese, 6, 20126 Milano MI, Italy
⁽⁵⁾ Prysmian Group, Eindhoven 5651 CA, The Netherlands

mikael.mazur@nokia-bell-labs.com

Th.B.3.5 – 11:45-12:00, Thursday, 5 October 2023, Boisdale - Ground Floor

Thank you for your attention!

Giammarco Di Sciullo

giammarco.disciullo@graduate.univaq.it

Università degli Studi dell'Aquila