

Julia: Your new secret romance?

Jonas Krimmer | Hack your Research @ ECOC 2023

Who Is Julia?

- Dynamic programming language
- First release in 2012
- Just-in-time compilation implemented using LLVM
- Dynamical function dispatch based on the run-time (dynamic) argument type(s) → Multiple dispatch

f(x::Number) = 2x
f(x::String) = x * x
f(1) # → f(1) = 2
f("1") # → f("1") = "11"

References: <u>Bezanson, J. et al. SIREV 59, 2017</u> Copyright (c) 2012-2022: <u>Stefan Karpinski, CC BY-NC-SA 4.0</u>, via <u>GitHub</u>

Key Features of Julia

- No need to vectorize code for performance; loops are fast!
- Support for parallelism (multi-threading!) & distributed computation
- Call C functions without intermediate wrappers
- Macros and other metaprogramming facilities
- Syntax similar to Python or MATLAB
- High interoperability with Python

References: Python: <u>www.python.org</u>, <u>GPL</u>, via Wikimedia Commons Matlab: <u>Jarekt</u>, Public domain, via Wikimedia Commons Julia 1.9 Documentation, visited on 30.09.2023

Popularity of Programming Languages

PYPL popularity based on how often language tutorials are searched on Google

Reference: PYPL PopularitY of Programming Language index, last visited on September 30, 2023. https://pypl.github.io/PYPL.html

Why People Love Python?

- Simple and easy-to-learn syntax
- Powerful standard library

- Sheer endless number of third-party packages, e.g., numpy, tensorflow, ...
- Availability of countless tutorials
- Large community

⇒ Jack of all trades, master of none?

References: Numpy: <u>Isabela Presedo-Floyd</u>, <u>CC BY-SA 4.0</u>, via Wikimedia Commons TensorFlow: <u>Google LLC</u>, Public domain, via Wikimedia Commons

Drawbacks of Python...

- Interpreted language → significantly slower than compiled languages
- Optimized external libraries such as numpy required for performance

Runtime of pure-python sum (µs): 639.9389999933192 Runtime of numpy sum (µs): 54.96499999935622 Ratio pure-python/numpy: 11.642663513159546

- Indents mess up code
- Zero-based indexing (2)

... That Julia Avoids

- Just-in-time compiled code ⇒ No external libraries required for short runtime
- Reproduce summation example from python

- Indents do not matter, use end instead
- One-based indexing (2)

Live Demo 1: Simulation

Generation of phase screens for simulating light propagation through atmospheric turbulence

Reference: McGlamery, Proc. SPIE 0074, 1976

Live Demo 2: Digital-Signal Processing

Constant-Modulus-Algorithm for blind equalization of constant modulus payloads

Reference: Godard, IEEE Trans. Commun. 28, 1980

Karlsruhe Institute of Technology

Can You Substitute Julia for Python?

- Simple and easy-to-learn syntax?
- Powerful standard library?
- Sheer endless number of third-party packages? ×
- Availability of countless tutorials? ×
- Large community? ×

 \Rightarrow Clear answer: It depends! $\textcircled{\circ}$

Drawbacks of Julia That Python Avoids

- So-called "time to first plot" (TTFP)
- Just-in-time compilation \Rightarrow Running functions for the first time slow
- \blacksquare \Rightarrow **Initialize** with computationally less expensive trial before running simulations
- Luckily, TTFP keeps reducing with almost every Julia release

Getting Started: Julia Installation

- Recommended approach: Cross-platform installer for Julia with version manager juliaup
- Manages updates and pieceful coexistence of multiple Julia versions

Windows

- Recommended: Install Julia and Juliaup directly from the Windows store
- Alternative (Terminal): winget install julia -s msstore

Mac and Linux

Execute the following command in a shell curl -fsSL https://install.julialang.org | sh

Getting Started: Development Environment (I)

Recommended IDE: <u>Visual Studio Code</u> with <u>"VS Code Julia extension</u>"

Getting Started: Development Environment (II)

Recommended IDE: <u>Visual Studio Code</u> with <u>"VS Code Julia extension</u>"

Getting Started: Set Up Virtual Environments

- REPL: type] to activate the Julia package manager
- Input activate newenv and press Enter
- Note: The package manager remains active afterwards!
- Type update and confirm with Enter
- New virtual environment: directory "newenv"

PROBLEMS	OUTPUT	DEBUG CONSOLE	TERMINAL	PORTS	Julia REPL (v1.9.3	» + ~ 🖽	Ū ···	^ X
"HYR + EC	DC 2023 =	Ψ						
<pre>(@v1.9) pkg> activate newenv Activating new project at `C:\Users\mv6955\Documents\00 Projects\2023-10 HYR ECOC 2023\newe nv`</pre>								
<pre>(newenv) pkg> update Updating registry at `C:\Users\mv6955\.julia\registries\General.toml` No Changes to `C:\Users\mv6955\Documents\00 Projects\2023-10 HYR ECOC 2023\newenv\Project.t oml` No Changes to `C:\Users\mv6955\Documents\00 Projects\2023-10 HYR ECOC 2023\newenv\Manifest. toml`</pre>								
(newenv)	okg>							
julia>		Pressing	Backsp	bace dead	tivates pac	ckage n	nanag	jer!
				$\left(\right)$	For	furthe	r	$\overline{}$

For further information on environments, see the Julia Docs

Getting Started: Using Virtual Environments

- How can we use an environment in VS Code?
- "Open Folder" in VS Code and choose the environment's directory
- 2. Select the "Julia env" from the VS Code bottom bar
- From the command line, you can activate any non-default environment <env> with julia --project=<env>

Getting Started: Standard Library

- Among others, the rich standard library features the packages
 - **Dates**: Working with dates/time
 - **Distributed**: Tools for distributed parallel processing
 - LinearAlgebra: Linear algebra routines interfacing BLAS/LAPACK
 - **Random**: Advanced tools for random number generation
 - SparseArrays: Support for sparse vectors & matrices
- To use the functions provided by these libraries, load them into your workspace, e.g., with using LinearAlgebra
- If you prefer to keep these functions in a separate module, use import LinearAlgebra instead

Getting Started: Using Packages

To use the functions provided by these libraries, load them into your workspace, e.g., with

julia> using LinearAlgebra julia> det(ones(3,3)) 0.0

If you prefer to keep these functions in a separate module, use import LinearAlgebra instead

julia> import LinearAlgebra
julia> LinearAlgebra.det(ones(3,3))
0.0

Getting Started: Installing Packages

- The standard library does not provide FFT implementations or plotting...
- why we install <u>FFTW.jl</u> & <u>Plots.jl</u>.
- On the REPL, activate the package manager with]
- Input add FFTW, Plots and confirm with Enter
- Let's write an example script: example_script_hyr.jl

Getting Started: Example Script

2

Institute of Photonics and Quantum Electronics Department of Electrical Engineering and Information Technology

200

400

0